
Asia-Pacific Informatics Olympiad 2010

Commando: Solution

Commando: Solution

Solution 1

O(n3): Using dynamic programming, let f(n) indicate the maximum battle
effectiveness after adjustment. We have transfer equations below:

f(n) = max
0≤i<n

�
f(i) + g(

n�

j=i+1

Xj)

�
, g(x) = Ax2 + Bx + C

Such a solution should scored around 20 %.

Solution 2

O(n2): Use pre-calculated partial sum to accelerate the solution above. Let

Si =
n�

i=1
Xi, we have f(n) = max

0≤i<n
{f(i) + g(Sn − Si)}

Such a solution should scored around 50 %.

Solution 3

O(n): Consider two decisions i < j, we choose i instead of j if and only if :

f(i) + g(Sn − Si) > f(j) + g(Sn − Sj)⇔
g(Sn − Si)− g(Sn − Sj) > f(j)− f(i)⇔
A

�
(Sn − Si)

2 − (Sn − Sj)
2� + B ((Sn − Si)− (Sn − Sj)) > f(j)− f(i)⇔

A(2Sn − Si − Sj)(Sj − Si) + B(Sj − Si) > f(j)− f(i)⇔

A(2Sn − Si − Sj) + B >
f(j)− f(i)

Sj − Si
⇔

2Sn <
1

A

�
f(j)− f(i)

Sj − Si
−B

�
+ Si + Sj

Thus, we can use a queue holding all necessary decisions. Each decision in
the queue is the best decision during a specific range of Sn. When a decision
is to be made, we simply begin searching at one end of the queue, find the
first decision where Sn is in its range. After that, we put decision N at the
other end of the queue as a new decision, updating range of decisions before
it using the inequality above.

English – Version 0.1

Page 1/16

Asia-Pacific Informatics Olympiad 2010

Commando: Solution

Such a solution should scored 100 %.

English – Version 0.1

Page 2/16

Asia-Pacific Informatics Olympiad 2010

Patrol: Solution

Patrol: Solution

The road network forms a tree T . A tree with N nodes has N − 1 edges.
In T , the length of a tour that visits all edges is 2(N − 1), because each edge
is visited twice. Recall that adding edges into a tree creates cycles.

Simpler case

We consider a simpler case when K = 1. Suppose that we add edge e to
T . The resulting graph T � contain exactly one cycle C. The cheapest tour
visiting all edges uses each edge in C once and all other edges twice. Denote
C − e as path P . The new length of the required tour is

2(N − 1)− L + 1

where L is the length of P . Thus, for K = 1, we need to find the maximum
path length for paths in T . This value is called the diameter of T .

There are many ways to find the diameter. We shall use dynamic pro-
gramming, which can be turn to be the solution for the general case.

First we root the tree at some node r; the parent-child relation between
adjacent nodes can be defined naturally. For each node u, let H[u] denote the
length of the longest path from u to some of its descendants. We can compute
H[u] for each u, in O(N) time, using a simple dynamic programming.

Consider the longest path P , let node u be the node on P closest to the
root r. By definition, u is unique. Given u, the length of P must be either
H[u], if u has one children, or

max
v,w : different children of u

(2 + H[v] + H[w])

when u has more than one children. The value above is important to the
case where K = 2 as well, so let’s define it as L[u]. Formally, L[u] is the
maximum length of paths containing u such that u is the closest node to root
r.

Thus by enumerating all nodes, one can find the length of the longest
path; thus, one can compute the answer to the case where K = 1.

When K = 2

Let’s call both edges e1 and e2. Let path Pi be a unique path that join two
endpoints of ei, also let’s call a unique cycle induced by adding each edge ei

(separately) as Ci. Note that Ci is a union of Pi and ei.

English – Version 0.1

Page 13/16

Asia-Pacific Informatics Olympiad 2010

Patrol: Solution

Figure 1: (a) Edges e1 and e2 are shown as dashed lines. Paths P1 and P2

intersect. The intersection is shown as thick line. In the tour, these edges
must still be traversed over twice. (b) The new edges f1 and f2 are shown
as dashed lines. Note that the number of times each edge on the tree is
traversed on is the same as before.

When P1 and P2 are disjoint, the length of the desired tour that traverses
all edges is

2(N − 1)− |L1|− |L2| + 2

where Li is the length of Pi.
It gets more complicated when Pi’s intersect. However, since one must

traverse on each ei exactly once, it is not hard to prove the following claim.
Claim: If P1 and P2 intersects, there is another pair of edges f1 and f2

such that the paths joining each edge’s endpoints are disjoint, and the length
of the tour traverses all edges in T + f1 + f2 is the same as in T + e1 + e2.

The proof is left out, but Figure 1 illustrates the idea of the proof.
From the claim, to find how to add two edges to minimize the tour, we

need to only consider finding a pair of disjoint paths whose sum of lengths is
maximum. This, again, can be solved using dynamic programming in O(N)
time.

Beside H[u], we need other variables. Let Tu be the subtree rooted at u.
We define:

• A[u] is the maximum length of paths inside Tu.

• B[u] is the maximum sum of lengths of any pairs of edge-disjoint paths
P and Q in Tu such that one endpoint of P is u.

Figure 2 shows examples of paths considered in A[u] and B[u].

English – Version 0.1

Page 14/16

Asia-Pacific Informatics Olympiad 2010

Patrol: Solution

Figure 2: (a) Paths considered in A[u]. (b) A pair of paths considered in
B[u].

Let ch(u) denote the number of children of u on the rooted tree T . It
takes O(ch(u)) time to compute A[u] from information from its children by
taking the maximum of A[v] for all children v of u and L[u].

To compute B[u], a straight-forward implementation takes O(ch(u)2)
time. A careful implementation only takes O(ch(u)) time. (See discussion in
the next section.)

With A’s and B’s of all child nodes of u at hand, one can find D[u] the
maximum sum of lengths of pairs of paths P1 and P2 such that

• P1 and P2 are disjoint,

• P1 contains u, and

• Among all nodes in P1 and P2, u is the closest to root r of T .

Again, a careful implementation runs in O(ch(u)) time. Easier imple-
mentations that run in O(ch(u)2) time and O(ch(u)3) time exist. We discuss
the implementations later.

After computing all O[u]’s, the minimum length of the desired tour is

2(N − 1)−max
u

D[u] + 2

Computing B[u] and D[u]

We first discuss how to compute B[u]. Let CH(u) denote u’s children. Recall
that B[u] is the maximum sum of the length of a pair of edge-disjoint paths
P and Q such that u is one end of P .

There are many cases to for P and Q:

English – Version 0.1

Page 15/16

Asia-Pacific Informatics Olympiad 2010

Patrol: Solution

• Case 1: Both P and Q contains u. In this case, we can compute B[u]
by finding 3 children with largest hight.

• Case 2a: P contains edge (u, v) for some child v in CH(u), and Q also
lies entirely in Tv. In this case, we have that B[u] = 1 + B[v].

• Case 2b: P contains edge (u, v) for some child v in CH(u), but Q lies
entirely in Tw for some child w not equal v. In this case, B[u] =
1 + H[v] + A[w].

Case 1 and Case 2a can be considered in O(ch(u)) time. By checking
all pairs of children in CH(u), we can consider Case 2b in O(ch(u)2) time.
The time can be reduced to linear by noticing that we can preprocess by
finding a child x with maximum A[x]. With that, we can consider the value
of 1 + H[v] + A[x] when v is not equal to x, and 1 + H[x] + maxw �=x A[w]
when v = x. The total running time is O(ch(u)).

The same idea can be applied to computing D[u]. In this case we want
to find two edge-disjoint paths P and Q in Tu. There are 3 cases to consider:

• Both P and Q contain u.

• Neither P nor Q contain u.

• One contains u.

The first two cases are easy to implement to run in time O(ch(u)). The
last one can be implemented to run in O(ch(u)3). The idea from the compu-
tation of B[u] can be applied here to reduce the running time to O(ch(u)2)
and O(ch(u)).

Scoring

Since optimizing the computation of B’s and D’s are not the essential part
of the task, solutions that uses both O(ch(u)3) and O(ch(u)2) per node u
should score the majority of the test cases.

English – Version 0.1

Page 16/16

Asia-Pacific Informatics Olympiad 2010

Signaling: Solution

Signaling: Solution

Solution
The problem description is: Given N points on 2D plane, we guarantee

that any three points are not in a line and any four points are not on a
circle. Randomly pick 3 different points to make a circle, compute the average
number of points that are inside or on the circle. We assume that each point
has the same probability to be chosen.

Our goal is to compute the average number of points that are covered
by the circle. In fact, we only need to compute the sum of points that are
covered by any circle and divide the result by

�
N
3

�
to get the exact answer

for our problem.
Algorithm 1: A brute force solution for this problem is to enumerate any

three different points and calculate their corresponding circumcircle. Then
we can count how many points are inside or on the circle in O(N) time.
Clearly, this solution works in time O(N4).

Algorithm 1 O(N4)

Require: a set of N points Pi = (xi, yi).
Ensure: return the average number of points which are covered by the circle.
1: ans← 0
2: for i = 1 to N do

3: for j = i + 1 to N do

4: for k = j + 1 to N do

5: (x, y, r)← ComputeCircumcircle(Pi, Pj, Pk)
6: for l = 1 to N do

7: if the distance between Al and (x, y) is at most r then

8: ans← ans + 1
9: end if

10: end for

11: end for

12: end for

13: end for

14: return ans/
�

n
3

�

Now our task is to count the number of quadruplets (A, B, C : D) such
that point D is inside the circumcircle of A, B, C. Let’s consider the position
relation between D and A, B, C:

English – Version 0.4

Page 9/16

Asia-Pacific Informatics Olympiad 2010

Signaling: Solution

Seeing the below figure, we can deduce that if point D is in area I, II or
III, then the sum of the angle D and the angle of the opposite point must
be > 180 degree since interior angle is always larger than the corresponding
circumferential angle. For example, if D is in area I, then ∠ADB+∠ACB >
180◦ and the four points must form a convex quadrangle. Similarly, if D is
outside the circle, the sum of the angle D and the corresponding opposite
angle must be < 180◦. And another case is D is inside the triangle ABC,
then the four points must form a concave quadrangle.

Hence let’s consider every quadrangle we get from the set of points, note
that two quadrangles are distinct if and only if the set of the 4 points are
different(4 points can construct different quadrangles if one point is inside
the triangle of another 3 points). We can see that

1. if it’s convex, then there are 2 ways to pick 3 points to make a circle so
that the circle contains the remaining point. This is because the sum
of the 4 angles is equal to 360 degree and no 4 points are on a circle,
there must be exactly a pair of opposite angles such that their sum is
greater than 180◦. For example, if ∠A + ∠C > 180◦ in a quadrangle
ABCD, then point C must be in the circle of ABD while A must be
in the circle of BCD.

2. if it’s concave, then there is exactly 1 way to pick 3 points to make a
circle such that the circle contains the remaining point. In this case,
the 4th point must be in the triangle of the other 3 points.

Let P = the number of convex quadrangles and Q = the number of
concave quadrangles. Our new goal is to compute the value of 2P + Q and

English – Version 0.4

Page 10/16

Asia-Pacific Informatics Olympiad 2010

Signaling: Solution

it is straightward that P + Q =
�

N
4

�
. There are many ways to compute P

or Q or any linear combinations of P and Q in O(N2 log N) or O(N3) time,
then we can get 2P +Q. Next we will give a very simple method to compute
4P + 3Q.

For any quadrangle T and a vertex v of T , if we can draw a line through
v such that all other 3 points lie in one side of this line, then we say that the
vertex v is “good”.

We can see that for any convex quadrangles, all vertices are “good” while
there are only 3 “good” vertices in a concave quadrangle except the innermost
point. If we can count the number of “good” points for any 4 points, then
we have got the value of 4P + 3Q.

Algorithm 2: enumerate a point as v, and sort all other points by their
polar angles with respect to v. Then we can scan all other points in the
order and maintain the number of points such that the angle between it and
the current point is < 180◦. Then we can count the number of quadrangles
in which v is a “good” vertex in O(N) time. For each point v, it takes
O(N log2 N) time to sort all other points by polar angles and O(N) time to
scan all points to get the answer. So the total running time is O(N2 log2 N).
Then we have got algorithm 2:

English – Version 0.4

Page 11/16

Asia-Pacific Informatics Olympiad 2010

Signaling: Solution

Algorithm 2 O(N2 log2 N)

Require: a set of N points Pi = (xi, yi).
Ensure: return the average number of points which are covered by the circle.
1: ans← 0
2: for i = 1 to N do

3: Sort all other points by the polar angle respect to point Pi and get
P �

1, P
�
2, . . . , P

�
N−1 � O(N log2 N)

4: k ← 1, s← 0
5: for j = 1 to N − 1 do

6: while �PiP �
k × �PiP �

j ≤ 0 and s < N − 1 do

7: s← s + 1
8: k ← next(k) � next(N − 1) = 1
9: end while

10: ans← ans + (s−1)(s−2)
2

11: end for

12: s← s− 1
13: end for

14: ans← ans− 2
�

n
4

�
� (4P + 3Q)− 2(P + Q) = 2P + Q

15: return ans/
�

n
3

�

Till now, we have got a complete algorithm in O(N2 log2 N) time. In
fact, there are many similar methods to compute a linear combination of P
and Q and after we sort all other N − 1 points, we can enumerate two points
to calculate the result to get an O(N3) algorithm which can pass 70% of the
test cases.

English – Version 0.4

Page 12/16

