(Analysis by Benjamin Qi)

Suppose that sweet corn grows in (1, 1). Consider the minimum j such that alfalfa grows in
(1,)).

e Sweet corn grows in (1, y) if y < j and alfalfa grows in (1, y) otherwise.

» Every square (x, y) satisfying y < j contains either a sweet corn sprinkler or no
sprinkler.

* There must be a sweet corn sprinkler at (1,7 — 1).

Now,

e Ifj = N + 1 then sweet corn grows in every square.

» Otherwise, run the solution recursively on the remaining N X (N + 1 — j) sub-
rectangle; namely, those squares (x, y) such that y > j. Find the minimum k such
that sweet corn grows in (k, j), and continue in a similar fashion.

In general, an assignment of sweet corn or alfalfa to each square corresponds to a down-
right path from (1, 1) to some square (x, y) that satisfiesx = N+ 1 ory = N + 1.Inthe
above example, the first three squares of the path are (1, 1) — (1,j) — (k,j). The
squares that are just before where the path changes direction (such as (1,7 — 1)) must
contain a sprinkler of a certain type (so their states are fixed), while every other square that
does not contain a cow can be in one of two states: either place no sprinkler or place a
sprinkler of the same type as the crop that grows in that square. A path that changes
direction d times fixes the states of d + 1 squares, so the states of the remaining squares
can be assigned in 2 unoceupied squares)—d=1 a5 1t suffices to sum 274~! over all paths and
then multiply the answer by 2 unoccupied squares) ot the end, In the code below,

p=2"" (mod 10° + 7).

We can do this naively in O(N?) and use prefix sums to get O(N?). It is probably easier to
write the O(N?) solution first and then figure out how to optimize it.

Dhruv Rohatgi's code:

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
#define MOD 1000000007

int N;

long long p = 500000004LL;
char A[2005][20057];

char B[2005][2005];

int r[2005][2005];

int b[2005][2005];

int psr[2005][2005];

int psb[2005][2005];

int main()

{
freopen("sprinklers2.in","r",stdin);
freopen("sprinklers2.out","w",stdout);
cin >> N;




for(int i=0;i<N;i++)
cin >> (A[i+1]+1);
for(int i=2;i<=N+1;i++)

if(A[i-17[1] == '.")
b[i][0] = psb[1][0] = p;
for(int j=1;j<=N;j++)
if(A[1][J] == ".")
r(1][3J] = psr[1][]] = p;

for(int i=2;i<=N+1;i++)
for(int j=1;j<=N;j++)
{
if(A[i][J] == ".")
{

r(i][j] = (p*psb[i][j-1])3MOD;

}
if (A[i-1][F+1] == '.")

{

b[i][j] = (p*psr[i-1][]])*%MOD;

}

psr[i][j] = (psr[i-1][J] + r[i][]])%MOD;

psb[i][]]
}
int ans = (psr[N][N] + psb[N+1][N])%MOD;
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
if(A[L][J]==".")

(psb[i][J-1]1 + b[i][]J])%MOD;

ans = (2LL*ans)3%MOD;

cout << ans << '\n';




