
(Analysis by Benjamin Qi)

Suppose that sweet corn grows in . Consider the minimum such that alfalfa grows in
.

Sweet corn grows in if and alfalfa grows in otherwise.
Every square satisfying contains either a sweet corn sprinkler or no
sprinkler.
There must be a sweet corn sprinkler at .

Now,

If then sweet corn grows in every square.
Otherwise, run the solution recursively on the remaining sub-
rectangle; namely, those squares such that . Find the minimum such
that sweet corn grows in , and continue in a similar fashion.

In general, an assignment of sweet corn or alfalfa to each square corresponds to a down-
right path from to some square that satis�es or . In the
above example, the �rst three squares of the path are . The
squares that are just before where the path changes direction (such as) must
contain a sprinkler of a certain type (so their states are �xed), while every other square that
does not contain a cow can be in one of two states: either place no sprinkler or place a
sprinkler of the same type as the crop that grows in that square. A path that changes
direction times �xes the states of squares, so the states of the remaining squares
can be assigned in ways. It su�ces to sum over all paths and
then multiply the answer by at the end. In the code below,

.

We can do this naively in and use pre�x sums to get . It is probably easier to
write the solution �rst and then �gure out how to optimize it.

Dhruv Rohatgi's code:

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
#define MOD 1000000007

int N;
long long p = 500000004LL;
char A[2005][2005];
char B[2005][2005];
int r[2005][2005];
int b[2005][2005];
int psr[2005][2005];
int psb[2005][2005];

int main()
{
 freopen("sprinklers2.in","r",stdin);
 freopen("sprinklers2.out","w",stdout);
 cin >> N;

(1, 1) j
(1, j)

(1, y) y < j (1, y)
(x, y) y < j

(1, j − 1)

j = N + 1
N × (N + 1 − j)

(x, y) y ≥ j k
(k, j)

(1, 1) (x, y) x = N + 1 y = N + 1
(1, 1) → (1, j) → (k, j)

(1, j − 1)

d d + 1

2(# unoccupied squares)−d−1 2−d−1

2(# unoccupied squares)

p ≡ (mod + 7)2−1 109

O()N 3 O()N 2

O()N 3

 for(int i=0;i<N;i++)
 cin >> (A[i+1]+1);
 for(int i=2;i<=N+1;i++)
 if(A[i-1][1] == '.')
 b[i][0] = psb[i][0] = p;
 for(int j=1;j<=N;j++)
 if(A[1][j] == '.')
 r[1][j] = psr[1][j] = p;
 for(int i=2;i<=N+1;i++)
 for(int j=1;j<=N;j++)
 {
 if(A[i][j] == '.')
 {
 r[i][j] = (p*psb[i][j-1])%MOD;
 }
 if(A[i-1][j+1] == '.')
 {
 b[i][j] = (p*psr[i-1][j])%MOD;
 }
 psr[i][j] = (psr[i-1][j] + r[i][j])%MOD;
 psb[i][j] = (psb[i][j-1] + b[i][j])%MOD;
 }
 int ans = (psr[N][N] + psb[N+1][N])%MOD;
 for(int i=1;i<=N;i++)
 for(int j=1;j<=N;j++)
 if(A[i][j]=='.')
 ans = (2LL*ans)%MOD;
 cout << ans << '\n';
}

