
(Analysis by Benjamin Qi, Sanjeev Murty)

Call the number of steps that a permutation requires the period of the permutation. Every
permutation can be partitioned into cycles of sizes such that

. Then the period is equal to .

Subtask :

Maintain the number of possible permutations for each possible LCM of a permutation
with elements for each . This number is quite small for (it ends up
being 1056) but grows quite rapidly. The number of permutations for a single LCM should
be stored because for all (Fermat's
Little Theorem).

Subtask :

In general, we can calculate the period of a permutation as follows:

Start with the period equal to one.
Let be a prime and be a positive integer.
If divides one of the cycle lengths then multiply the period by .

So we can essentially solve the problem independently for each distinct prime power .
Doing this in for a single prime power is su�cient for this subtask.

Subtask :

If we can count the number of ways to create a permutation of length for each
 such that no cycle length is divisible by in time, then the solution

runs in time.

Subtask :

The high bound on (hopefully) ensures that the above solution does not receive full
credit. How can we do better?

Note that if then we can compute the number of permutations containing a cycle
with length divisible by in time (assuming that we have precomputed some
quantities in). This is true because if there is a cycle with length divisible by , then
there must be exactly one cycle with length equal to (and the rest can have arbitrary
lengths).

Let's try to generalize. De�ne . Any permutation has between and cycles
with length divisible by . So it su�ces to count each of the following quantities for each

.

The number of permutations of length such that every cycle has length divisible
by .
The number of permutations of length such that no cycle has length
divisible by .

If we can count both of these in time, then this solution runs in

 time.

Mark Chen's code:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

int n; LL m;

typedef unsigned long long ull;
typedef __uint128_t L;

, , , … ,c1 c2 c3 ck

+ + … + = Nc1 c2 ck lcm(, , … ,)c1 c2 ck

N ≤ 50

n 1 ≤ n ≤ N N = 50

(mod M − 1) ≡ 1 (mod M)aM−1 0 < a < M

N ≤ 500

p k

D = pk p

D

O()N 2

N ≤ 3000

n

n ∈ [1, N] D O ()N 2

D

O (⋅) = O (log N)N 2 ∑N
D=1

1
D

N 2

N ≤ 7500

N

2D > N
D O(1)

O()N 2 pk

pk

D = pk 0 ⌊ ⌋N
D

D

k ∈ [0, ⌊ ⌋]N
D

Dk
D

N − Dk
D

O ()N 2

D2

O (⋅) = O (⋅) = O ()N 2 ∑∞
D=1

1

D2
N 2 π

2

6
N 2

struct FastMod {
 ull b, m;
 FastMod(ull b) : b(b), m(ull((L(1) << 64) / b)) {}
 ull reduce(ull a) {
 ull q = (ull)((L(m) * a) >> 64);
 ull r = a - q * b; // can be proven that 0 <= r < 2*b
 return r >= b ? r - b : r;
 }
};
FastMod f(2);

LL mul(LL x, LL y) {
 return f.reduce(x * y);
}

LL add(LL x, LL y) {
 x += y;
 if (x >= m) x -= m;
 return x;
}

LL sub(LL x, LL y) {
 x -= y;
 if (x < 0) x += m;
 return x;
}

LL powmod(LL a, LL b) {LL res=1; a %= (m+1); for(;b;b>>=1) {if (b&1) res = res*a % (m+1); a = a*a % (m+1);} return res;}

const int MAXN = 7505;
LL factorial[MAXN], c[MAXN][MAXN];

int main() {
 freopen("exercise.in","r",stdin);
 freopen("exercise.out","w",stdout);
 cin >> n >> m;

 m--;
 f = FastMod(m);

 factorial[0] = 1;
 for (int i = 1; i < MAXN; ++i) factorial[i] = mul(factorial[i-1], i);

 c[1][0] = c[1][1] = 1;
 for (int i = 2; i < MAXN; i++) {
 c[i][0] = c[i][i] = 1;
 for (int j = 1; j < i; j++) c[i][j] = add(c[i-1][j-1], c[i-1][j]);
 }

 vector<int> composite(MAXN);

 LL ans = 1;

 for (int i = 2; i <= n; i++) {
 if (!composite[i]) {
 for (int j = i; j <= n; j *= i) {
 // count permutations of length j*k where ALL cycles are divisible by j
 vector<LL> aj(n/j+1);
 aj[0] = 1;

 for (int k = 1; k < n/j+1; k++) {
 for (int l = 1; l <= k; l++) {
 aj[k] = add(aj[k], mul(mul(c[j*k-1][j*l-1], factorial[j*l-1]), aj[k-l]));
 }
 }

 // count permutations of length n-j*k where NO cycle is divisible by j
 vector<LL> nj(n/j+1);

 for (int k = n/j; k >= 0; k--) {
 nj[k] = factorial[n-j*k];
 for (int l = k+1; l <= n/j; l++) {
 nj[k] = sub(nj[k], mul(c[n-j*k][n-l*j], mul(aj[l-k], nj[l])));
 }
 }

 ans = (ans * powmod(i, sub(factorial[n], nj[0]))) % (m+1);
 }

 for (int j = 2*i; j <= n; j += i) {
 composite[j] = 1;
 }
 }
 }

 printf("%lld\n", ans);
}

My code (which uses the principle of inclusion and exclusion):

#include <bits/stdc++.h>
using namespace std;

void setIO(string s) {
 ios_base::sync_with_stdio(0); cin.tie(0);
 freopen((s+".in").c_str(),"r",stdin);
 freopen((s+".out").c_str(),"w",stdout);
}

typedef long long ll;
const int MX = 7501;

typedef unsigned long long ul;
typedef __uint128_t L;
struct ModFast {
 ul b, m; ModFast(ul b) : b(b), m(ul((L(1)<<64)/b)) {}
 ul reduce(ul a) {
 ul q = (ul)((L(m)*a)>>64), r = a-q*b;
 return r>=b?r-b:r; }
};

ModFast MF(1);

int M,MOD,n;
int ad(int a, int b) {
 a += b; if (a >= M) a -= M;
 return a;
}
int sub(int a, int b) {
 a -= b; if (a < 0) a += M;
 return a;
}
int mul(int a, int b) { return MF.reduce((ul)a*b); }

int choose[MX][MX];
int with(int z) { // # of permutations with z dividing some cycle length
 int res = 0;
 vector<int> dp(n/z+1); dp[0] = sub(0,1);
 for (int i = 1; i <= n/z; ++i) for (int j = 1; j <= i; ++j)
 dp[i] = sub(dp[i],mul(choose[i*z-1][j*z-1],dp[i-j]));
 for (int i = 1; i <= n/z; ++i)
 res = ad(res,mul(choose[n][n-i*z],dp[i]));
 return res;
}

ll mpow(ll a, ll b) { return !b?1:mpow(a*a%MOD,b/2)*(b&1?a:1)%MOD; }

int main() {
 setIO("exercise");
 cin >> n >> MOD; M = MOD-1; MF = ModFast(M);
 for (int i = 0; i <= n; ++i) {
 choose[i][0] = 1;
 for (int j = 0; j < i; ++j) choose[i][j+1] = mul(choose[i][j],i-j);
 }
 vector<bool> comp(n+1); ll ans = 1;
 for (int i = 2; i <= n; ++i) if (!comp[i]) {
 for (int j = 2*i; j <= n; j += i) comp[j] = 1;
 for (int j = i; j <= n; j *= i) ans = ans*mpow(i,with(j))%MOD;
 }
 cout << ans << "\n";
}

It is possible to solve this problem more quickly if you are familiar with exponential
generating functions (EGF). This comment gives an explicit formula, which I'll try to explain
here. From KACTL, we have the following fact. Let be the number of -permutations
whose cycle lengths all belong to the set . Letting , it follows that

Essentially, the term corresponds to the number of ways to form permutations with
exactly cycles. When all cycle lengths are valid,

(n)gS n

S S(x) = ∑n∈S
xn

n

(n) = exp(S(x)) = .∑
n=0

gS

xn

n! ∑
k=0

∞
S(x)k

k!

S(x)k

k!

k

https://codeforces.com/blog/entry/75154?#comment-595888

and

which is clearly correct. If we want to exclude cycles with lengths that are multiples of ,
then

It follows that

By the binomial theorem, the numerator has only terms with degree divisible by . Letting
 and denote the coe�cient of in , it follows that

By the binomial theorem,

So it turns out that we can replace part of the above code with

int without(int z) {
 int res = 1;
 for (int i = 1; i <= n; ++i) {
 if (i%z != 0) res = mul(res,i);
 else res = mul(res,i-1);
 }
 return res;
}
int with(int z) { // # of permutations with z dividing some cycle length
 return sub(choose[n][n],without(z));
}

although this isn't actually faster since it still runs in time
(where denotes the number of primes that are at most).

Here is a way to derive this formula without generating functions (by Sanjeev):

(BEGIN)

We use to denote , the falling factorial.

Let be the number of permutations that have no cycles with length dividing . Then, if
we imagine choosing the rest of the cycle that belongs to then recursing, we have

Expressing this in terms of , we have

S(x) = = − ln(1 − x)∑
n=1

∞
xn

n

exp(S(x)) = = 1 + x + + ⋯ ,
1

1 − x
x2

z

S(x) = − ln(1 − x) − ⋅ = − ln(1 − x) + ⋅ ln(1 −).
1

z ∑
k=1

∞
xzk

k

1

z
xz

exp(S(x)) = .
(1 − xz)1/z

1 − x

z
d = ⌊n/z⌋ []P(x)xn xn P(x)

[] = [] = [](1 − .xn (1 − xz)1/z

1 − x
xzd (1 − xz)1/z

1 − xz
xzd xz)1/z−1

(n) = n! ⋅ (−1 () = (i − 1/z) = ⋅ (zi − 1).gS)d 1/z − 1

d

n!

d! ∏
i=1

d
n!

d!zd ∏
i=1

d

O(Nπ(N)) = O(/ log N)N 2

π(N) N

(n)k n ⋅ (n − 1) ⋯ (n − k + 1)

an z
1

= (n − 1 .an ∑
k=1
z∤k

n

)k−1an−k

an−z

= (n − 1 + (n − 1 .an)zan−z ∑
k=1

z−1

)k−1an−k

You can think of the above as two cases: we choose a cycle of length greater than or less
than .

Now consider the corresponding expression for :

If we subtract times this expression from the expression for , we get

This already implies an algorithm for the original problem after pre-computation,
but we can do better. Manipulating the above, we see

From the initial conditions, we see that is only nonzero when . It is then
straightforward by induction that when , so we have

If we precompute for all prime powers (noting that it is an integer), then

after that we have an

algorithm for the problem. First factorize in time (or , since prime
factors of greater than do not a�ect our answer). Then we can do this
precomputation in time by looping in increasing order of and keeping track
of the powers of the various prime factors of in , in addition to the part of it

sharing no prime factors with . For each prime power , if it is coprime to
, we simply multiply by . Otherwise, we subtract

from the exponent of we have been keeping track of. Our �nal time complexity
(assuming a word size of) is then

and we require space. The space can probably be improved to . Note that
the constant factor for is favorable, since it comes from the maximum number of
primes dividing (e.g. for).

(END)

Another solution that runs in time is to use divide and conquer to initialize a
data structure that allows you to query any range product modulo

 in constant time (where). This avoids the need to factorize .

z
z

an−1

= (n − 2 + (n − 2 .an−1)zan−z−1 ∑
k=1

z−1

)k−1an−k−1

n − 1 an

an = (n − 1 + (n − 1)[− (n − 2 − (n − 2] + (n − 1)zan−z an−1)zan−z−1)z−2an−z)0 an−1

= n + (n − 1 (n − z − 1) − (n − 1 .an−1)z−1 an−z)z+1an−z−1

O(nπ(n))

≜ n −bn an−1 an = (n − 1 (n − z − 1)[(n − z) −])z−1 an−z−1 an−z

= (n − 1 (n − z − 1) .)z−1 bn−z

bn z ∣ n
=bn an−1 z ∣ n

= { = (zi − 1)an
nan−1

(n − 1)an−1

if z ∤ n

else

n!

⌊n/z⌋!z⌊n/z⌋ ∏
i=1

⌊n/z⌋

n!

⌊n/z⌋!z⌊n/z⌋
z ≤ n

O = O(n log log n)

⎛

⎝

⎜⎜⎜⎜ ∑
1≤z≤n,

z=pk

n

z

⎞

⎠

⎟⎟⎟⎟

M − 1 O()M‾‾√ O(n)
M − 1 n

O(n log M) z

M − 1 n!

⌊n/z⌋!

M − 1 z = pk

M − 1 n!

⌊n/z⌋!
mod M − 1z−⌊n/z⌋ k ⌊n/z⌋

p
Ω(max(log n, log M))

O (n(log log n + log M)) ,

O(n) O(n/ log n)
log M

M − 1 9 M ≤ 109

O(N log N)
l ⋅ (l + 1) ⋯ (r − 1) ⋅ r

M − 1 1 ≤ l ≤ r ≤ N M − 1

